где V — объемный расход паров в рассчитываемом сечении колонны, м³/с; G — массовый расход паров в том же сечении, кг/с; $W_{\rm A}$, $G_{\rm A}$ — соответственно линейная (м/с) и массовая [кг/(м²-с)] допустимые скорости паров в полном сечении колонны.

Если объемный расход паров V значительно меняется в различных сечениях колонны, то необходимо выполнить расчеты для всех сечений и затем из стандартного ряда внутренних диаметров аппаратов выбрать один (или несколько) диаметров проектируемой колонны. Допустимые скорости $W_{\rm A}$, $G_{\rm A}$ определяются типом контактного устройства, принятого для данной колонны.

Допустимую линейную скорость паров в колонне определяют по уравнению

$$W_{\rm A} = 0.85 \cdot 10^{-4} C_{\rm max} \sqrt{\frac{\rho_{\rm m} - \rho_{\rm m}}{\rho_{\rm m}}}, \tag{VII.16}$$

а массовую скорость по уравнению

$$G_{\rm A} = 0.85 \cdot 10^{-4} C_{\rm max} \sqrt{\rho_{\rm n}(\rho_{\rm x} - \rho_{\rm n})}$$
, (VII.17)

где C_{\max} — коэффициент, величина которого зависит от конструкции тарелки, расстояния между тарелками, массового расхода жидкости и ее поверхностного натяжения.

В уравнениях (VII.16) и (VII.17) величина коэффициента

$$C_{\text{max}} = K_1 K_2 C_1 - K_3 (\lambda - 35).$$
 (VII.18)

Коэффициент K_1 определяется в зависимости от конструкции тарелки и имеет следующие значения:

Колпачковая тарелка	1,0
Тарелка из S-образных элементов	
Клапанная тарелка ($\phi_0 = 0.04 + 0.1$)	1,15
Ситчатая тарелка ($\phi_0 = 0.04 + 0.08$), струйная тарелка	
Струйная тарелка с отбойниками	

Для атмосферных колонн при расстоянии между тарелками $H_{\tau} \ge 350$ мм коэффициент $K_2 = 1$; для вакуумных колонн с промывным сепаратором в питательной секции $K_2 = 1$ (без сепаратора 0,9), при перегонке пенящихся и высоковязких жидкостей $K_2 = 0$,6; для абсорберов $K_2 = 1$, а для десорберов $K_2 = 1$,13.

Значение коэффициента C_1 при $\sigma \ge 20\cdot 10^{-3}$ H/м определяют по графику, приведенному на рис. VII-21 (кривые 1 и 2); при более низких значениях ($\sigma < 20\cdot 10^{-3}$ H/м) величину коэффициента C_1 определяют по уравнению

$$C_1 = C_{120} \sqrt[4]{\frac{\sigma}{20 \cdot 10^{-3}}},$$

в котором коэффициент C_{120} определяют по кривой 1 и 2 на рис. VII-21. На этом же рисунке приведены также кривые, полученные при обработке опытных данных для конкретных условий эксплуатации колонн.

Коэффициент K_3 для струйных тарелок равен 5, а для остальных 4.

Значение коэффициента λ в уравнении (VII.18), учитывающего влияние жидкостной нагрузки на производительность колонны, рассчитывают по уравнению